Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning
S. Zhang and
T. N. Wong ()
Additional contact information
S. Zhang: The University of Hong Kong
T. N. Wong: The University of Hong Kong
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 3, No 9, 585-601
Abstract:
Abstract This study develops an enhanced ant colony optimization (E-ACO) meta-heuristic to accomplish the integrated process planning and scheduling (IPPS) problem in the job-shop environment. The IPPS problem is represented by AND/OR graphs to implement the search-based algorithm, which aims at obtaining effective and near-optimal solutions in terms of makespan, job flow time and computation time taken. In accordance with the characteristics of the IPPS problem, the mechanism of ACO algorithm has been enhanced with several modifications, including quantification of convergence level, introduction of node-based pheromone, earliest finishing time-based strategy of determining the heuristic desirability, and oriented elitist pheromone deposit strategy. Using test cases with comprehensive consideration of manufacturing flexibilities, experiments are conducted to evaluate the approach, and to study the effects of algorithm parameters, with a general guideline for ACO parameter tuning for IPPS problems provided. The results show that with the specific modifications made on ACO algorithm, it is able to generate encouraging performance which outperforms many other meta-heuristics.
Keywords: Integrated process planning and scheduling; Ant colony optimization; Algorithm parameter tuning (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-014-1023-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:3:d:10.1007_s10845-014-1023-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-014-1023-3
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().