Prediction of angular distortion in the fiber laser keyhole welding process based on a variable-fidelity approximation modeling approach
Qi Zhou,
Longchao Cao,
Hui Zhou () and
Xiang Huang
Additional contact information
Qi Zhou: Huazhong University of Science & Technology
Longchao Cao: Huazhong University of Science & Technology
Hui Zhou: Nanyang Technological University
Xiang Huang: Georgia Institute of Technology
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 3, No 18, 719-736
Abstract:
Abstract The angular distortion is one of the most common types of distortions frequently observed in laser weld assembling processes, which leads to a decline in welding joints’ quality and additional costs of rework. Therefore, it is of great importance to control and reduce the welding-induced angular distortion by selecting appropriate welding process parameters. The challenge is how to predict the welding-induced angular distortion in the whole process parameter design domain accurately and efficiently. To address this challenge, a variable-fidelity approximation modeling approach is developed in this paper, where two different levels of fidelity data are integrated for predicting the angular distortion in the laser welding process. In the proposed approach, a three-dimensional thermo-mechanical finite element model is developed as a low-fidelity model, while the laser welding experiment is taken as a high-fidelity model. A low-fidelity radial basis function (RBF) model is constructed based on the sample data from the finite element simulation. Then a linear tuning strategy is introduced to bring the low-fidelity RBF model as close as possible to the data from the laser welding experiment. Finally, the variable-fidelity approximation model is constructed by adopting a scaling function to calibrate the remaining differences between the tuning low-fidelity approximation model and the high-fidelity data. Two types of validation approaches are adopted to compare the prediction accuracy of the variable-fidelity approximation model with those of the single-fidelity approximation models solely constructed with laser welding experiment or finite element simulation. Results illustrate that the prediction ability of the developed variable-fidelity approximation model outperforms those of the single-fidelity approximation models.
Keywords: Welding-induced distortion; Finite element analysis; Laser welding experiment; Radial basis function; Process parameter (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-018-1391-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:3:d:10.1007_s10845-018-1391-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-018-1391-1
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().