The dominance-based rough set approach to cylindrical plunge grinding process diagnosis
Pawel Lezanski () and
Maria Pilacinska ()
Additional contact information
Pawel Lezanski: Lodz University of Technology
Maria Pilacinska: Poznan University of Technology
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 5, No 3, 989-1004
Abstract:
Abstract The dominance-based rough set approach is proposed as a methodology for plunge grinding process diagnosis. The process is analyzed and next its diagnosis is considered as a multi-criteria decision making problem based on the modelling of relationships between different process states and their symptoms using a set of rules induced from measured process data. The development of the diagnostic system is characterized by three phases. Firstly, the process experimental data is prepared in the form of a decision table. Using selected methods of signal processing, each process running is described by 17 process state features (condition attributes) and 5 criteria evaluating process state and results (decision attributes). The semantic correlation between all the attributes is modelled. Next, the phase of condition attributes selection and knowledge extraction are strictly integrated with the phase of the model evaluation using an iterative approach. After each loop of the iterative feature selection procedure the induction of rules is conducted using the VC-DomLEM algorithm. The classification capability of the induced rules is carried out using the leave-one-out method and a set of measures. The classification accuracy of individual models is in the range of 80.77–98.72 %. The induced set of rules constitutes a classifier for an assessment of new process run cases.
Keywords: Cylindrical plunge grinding; Process diagnosis; Signal processing; Dominance-based rough set approach; Semantic correlation; Rule model building (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1230-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:5:d:10.1007_s10845-016-1230-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-016-1230-1
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().