A dual-channel network design model in a green supply chain considering pricing and transportation mode choice
Farnaz Barzinpour () and
Peyman Taki ()
Additional contact information
Farnaz Barzinpour: Iran University of Science and Technology
Peyman Taki: Iran University of Science and Technology
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 7, No 4, 1465-1483
Abstract:
Abstract A green supply chain with a well-designed network can strongly influence the performance of supply chain and environment. The designed network should lead the supply chain to efficient and effective management to meet the efficient profit, sustainable effects on environment and customer needs. The proposed mathematical model in this paper identifies locations of productions and shipment quantity by exploiting the trade-off between costs, and emissions for a dual channel supply chain network. Due to considering different prices and customers zones for channels, determining the prices and strategic decision variables to meet the maximum profit for the proposed green supply chain is contemplated. In this paper, the transportation mode as a tactical decision has been considered that can affect the cost and emissions. Lead time and lost sales are considered in the modeling to reach more reality. The developed mathematical model is a mixed integer non-linear programming which is solved by GAMS. Due to NP-hard nature of the proposed model and long run time for large-size problems by GAMS, artificial immune system algorithm based on CLONALG, genetic and memetic algorithms are applied. Taguchi technique is used for parameter tuning of all meta-heuristic algorithms. Results demonstrate the strength of CLONALG rather than the other methods.
Keywords: Supply chain network design; Mathematical model; Greenhouse gases emissions; Pricing; Artificial immune system; CLONALG (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-015-1190-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:7:d:10.1007_s10845-015-1190-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-015-1190-x
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().