Branch pipe routing based on 3D connection graph and concurrent ant colony optimization algorithm
Yanfeng Qu (),
Dan Jiang () and
Qingyan Yang
Additional contact information
Yanfeng Qu: Shanghai Jiao Tong University
Dan Jiang: Shanghai Jiao Tong University
Qingyan Yang: Shanghai Jiao Tong University
Journal of Intelligent Manufacturing, 2018, vol. 29, issue 7, No 15, 1647-1657
Abstract:
Abstract Pipe routing, in particular branch pipes with multiple terminals, has an important influence on product performance and reliability. This paper develops a new rectilinear branch pipe routing approach for automatic generation of the optimal rectilinear branch pipe routes in constrained spaces. Firstly, this paper presents a new 3D connection graph, which is constructed by extending a new 2D connection graph. The new 2D connection graph is constructed according to five criteria in discrete Manhattan spaces. The 3D connection graph can model the 3D constrained layout space efficiently. The length of pipelines and the number of bends are modeled as the optimal design goal considering the number of branch points and three types of engineering constraints. Three types of engineering constraints are modeled by this 3D graph and potential value. Secondly, a new concurrent Max–Min Ant System optimization algorithm, which adopts concurrent search strategy and dynamic update mechanism, is used to solve Rectilinear Branch Pipe Routing optimization problem. This algorithm can improve the search efficiency in 3D constrained layout space. Numerical comparisons with other current approaches in literatures demonstrate the efficiency and effectiveness of the proposed approach. Finally, a case study of pipe routing for aero-engines is conducted to validate this approach.
Keywords: Pipe routing; Branch pipeline; 3D connection graph; Concurrent Max–Min Ant System (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1203-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:29:y:2018:i:7:d:10.1007_s10845-016-1203-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-016-1203-4
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().