A weighted interval rough number based method to determine relative importance ratings of customer requirements in QFD product planning
Pai Zheng (),
Xun Xu () and
Sheng Quan Xie ()
Additional contact information
Pai Zheng: University of Auckland
Xun Xu: University of Auckland
Sheng Quan Xie: University of Auckland
Journal of Intelligent Manufacturing, 2019, vol. 30, issue 1, No 2, 3-16
Abstract:
Abstract Customer requirements (CRs) play a significant role in the product development process, especially in the early design stage. Quality function deployment (QFD), as a useful tool in customer-oriented product development, provides a systematic approach towards satisfying CRs. Customers are heterogeneous and their requirements are often vague, therefore, how to determine the relative importance ratings (RIRs) of CRs and eventually evaluate the final importance ratings is a critical step in the QFD product planning process. Aiming to improve the existing approaches by interpreting various CR preferences more objectively and accurately, this paper proposes a weighted interval rough number method. CRs are rated with interval numbers, rather than a crisp number, which is more flexible to adapt in real life; also, the fusion of customer heterogeneity is addressed by assigning different weights to customers based on several factors. The consistency of RIRs is maintained by the proposed procedures with design rules. A comparative study among fuzzy weighted average method, rough number method and the proposed method is conducted at last. The result shows that the proposed method is more suitable in determining the RIRs of CRs with vague information.
Keywords: Quality function deployment; Rough set theory; Fuzzy set theory; Product planning; Customer-centric design (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1224-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:1:d:10.1007_s10845-016-1224-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-016-1224-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().