Knowledge discovery and predictive accuracy comparison of different classification algorithms for mould level fluctuation phenomenon in thin slab caster
Preetam Debasish Saha Roy () and
Prabhat Kumar Tiwari
Additional contact information
Preetam Debasish Saha Roy: Tata Steel
Prabhat Kumar Tiwari: Tata Steel
Journal of Intelligent Manufacturing, 2019, vol. 30, issue 1, No 19, 254 pages
Abstract:
Abstract Mould level fluctuation (MLF) is one of the main reasons for surface defects in continuously cast slabs. In these study first, large scale mould level fluctuations has been categorized in three different cases based on actual plant data. Moreover, theoretical formulation has been investigated to better understand the underlying physics of flow. Next, exploratory data analysis is used for preliminary investigation into the phenomenon based on actual plant data. Finally, different classification algorithms were used to classify non-mould level fluctuation cases from MLF cases for two different scenarios- one where all mould level fluctuation cases are considered and in another where only a particular case of mould level fluctuation is considered. Classification algorithm such as recursive partitioning, random forest etc. has been used to identify different casting parameters affecting the phenomenon of mould level fluctuation. 70 % of the dataset used as training dataset and rest 30 % as the testing dataset. Prediction accuracy of these different classification algorithms along with an ensemble model has been compared on a completely unseen test set. Ladle change operation and superheat temperature has been identified as process parameters influencing the phenomenon of large scale mould level fluctuations.
Keywords: Continuous casting; Mould level fluctuation; Classification algorithm; Data mining; Random Forest (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1242-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:1:d:10.1007_s10845-016-1242-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-016-1242-x
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().