EconPapers    
Economics at your fingertips  
 

An approach to multiple fault diagnosis using fuzzy logic

Adrián Rodríguez Ramos (), Carlos Domínguez Acosta, Pedro J. Rivera Torres (), Eileen I. Serrano Mercado, Gerson Beauchamp Baez, Luis Anido Rifón and Orestes Llanes-Santiago ()
Additional contact information
Adrián Rodríguez Ramos: Instituto Politécnico José A. Echeverría, CUJAE
Carlos Domínguez Acosta: Instituto Politécnico José A. Echeverría, CUJAE
Pedro J. Rivera Torres: AtlanTIC-ETSET-Universidade de Vigo
Eileen I. Serrano Mercado: Polytechnic University of Puerto Rico
Gerson Beauchamp Baez: University of Puerto Rico at Mayagüez
Luis Anido Rifón: AtlanTIC-ETSET-Universidade de Vigo
Orestes Llanes-Santiago: Instituto Politécnico José A. Echeverría, CUJAE

Journal of Intelligent Manufacturing, 2019, vol. 30, issue 1, No 30, 429-439

Abstract: Abstract The development of systems capable of diagnosing new and multiple faults in industrial systems is an active research topic. In this paper a model-based diagnostic system capable of diagnosing new and multiple faults using fuzzy logic as a fundamental tool is proposed. Also, the wavelet transform is used for isolating noise present in measurements. The proposed model was applied to the Continuously-Stirred Tank Heater model benchmark. The results demonstrate the feasibility of the proposed model, improving the robustness in the diagnostic, without loss of sensitivity to incipient or small magnitude faults.

Keywords: Fault diagnosis; Multiple faults; Fuzzy logic; Robustness; Sensitivity; Wavelet transform (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1256-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:1:d:10.1007_s10845-016-1256-4

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-016-1256-4

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:30:y:2019:i:1:d:10.1007_s10845-016-1256-4