EconPapers    
Economics at your fingertips  
 

An artificial neural network approach for tool path generation in incremental sheet metal free-forming

Christoph Hartmann (), Daniel Opritescu and Wolfram Volk
Additional contact information
Christoph Hartmann: Technische Universität München
Daniel Opritescu: Technische Universität München
Wolfram Volk: Technische Universität München

Journal of Intelligent Manufacturing, 2019, vol. 30, issue 2, No 19, 757-770

Abstract: Abstract This research considers a specific incremental sheet metal free-forming process, which allows for individualized component manufacturing. However, for a reasonable application in practice, an automation of the manual process is mandatory. Unfortunately, up to now, no general tool path generation strategies are available when free-forming processes are to be utilized. On this account, for the investigated driving process, a holistic concept for deriving tool paths for the production of sheet metal parts directly from a digital component model is presented adopting an artificial neural network architecture. Consequently, for the very first time an automated part production is possible in incremental sheet metal free-forming applications. For this, a suitable network input and output structure is designed. Balanced sample data sets are generated for appropriate training. An associated network topology is determined and undergoes a training and testing phase. The influence of different training algorithms, network configurations, as well as training sets have been studied in relation to a feedforward network structure with backpropagation. Finally, the proposed computer integrated manufacturing system is subject to validation and verification by automated sheet part production, which is followed by concluding remarks on the capabilities and limits of the concept.

Keywords: Sheet metal processing; Computer integrated manufacturing; Flexible manufacturing systems; Neural networks; Learning systems (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1279-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1279-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-016-1279-x

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1279-x