Real-time monitoring of chemical processes based on variation information of principal component analysis model
Bei Wang and
Xuefeng Yan ()
Additional contact information
Bei Wang: East China University of Science and Technology
Xuefeng Yan: East China University of Science and Technology
Journal of Intelligent Manufacturing, 2019, vol. 30, issue 2, No 22, 795-808
Abstract:
Abstract In industrial processes, the change of operating condition can obviously affect the relations among process data, which in turn indicate the corresponding operating conditions. Considering that the loadings and eigenvalues, generated from the principal component analysis (PCA) model, contain primary data information and can reflect the characteristics of data, this article proposes novel monitoring statistics which quantitatively evaluate the variation of these two matrices, collected from real-time updated PCA model for process monitoring. Given that abnormal data may be submerged by normal data, a combined moving window which selects both real-time data and normal data is employed to collect data for model construction. By comparing with other PCA-based and non-PCA-based methods through a simple numerical simulation and the Tennessee Eastman process, the proposed data-driven method is demonstrated to be effective and feasible. Additionally, some other PCA-based methods are utilized for comparison.
Keywords: Principal component analysis; Combined moving window; Fault detection; Process monitoring (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1281-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1281-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-016-1281-3
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().