EconPapers    
Economics at your fingertips  
 

Matching decision method for knowledgeable manufacturing system and its production environment

Hong-Sen Yan () and Yu-Fang Wang
Additional contact information
Hong-Sen Yan: Southeast University
Yu-Fang Wang: Southeast University

Journal of Intelligent Manufacturing, 2019, vol. 30, issue 2, No 20, 782 pages

Abstract: Abstract To secure the quick response of knowledgeable manufacturing system (KMS) to the dynamic production environment and its desirable adaptability and competitiveness, we propose a matching decision method that is based on the improved support vector machine (ISVM for short), and the production environment. Taking into account the uncertainty and fuzziness of the production environment, the triangular fuzzy numbers are introduced to represent the uncertain input factors. Independent penalty coefficients are employed for different categories to address the problem of unbalanced samples. To meet the requirement for classifying small, uncertain input, and unbalanced samples, an improved SVM model based on triangular fuzzy theory is put forward. Considering the mutagenic factor and dynamic weight, we improve the particle swarm algorithm to optimize the model parameters. The matching categories of KMS and dynamic production environment are defined, and the corresponding matching decision method based on ISVM model is built. Case study shows that the proposed ISVM matching decision method is feasible and effective.

Keywords: Knowledgeable manufacturing system; Production environment; Matching classification; Support vector machine (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-016-1283-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1283-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-016-1283-1

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1283-1