EconPapers    
Economics at your fingertips  
 

An adaptive approach for determining batch sizes using the hidden Markov model

Taejong Joo (), Minji Seo () and Dongmin Shin ()
Additional contact information
Taejong Joo: Hanyang University
Minji Seo: Hanyang University
Dongmin Shin: Hanyang University

Journal of Intelligent Manufacturing, 2019, vol. 30, issue 2, No 30, 917-932

Abstract: Abstract Determining an optimal batch size is one of the most classic problems in manufacturing systems and operations research. A typical approach is to construct and solve mathematical models of a batch size under several assumptions and constraints in terms of time, cost, or quality. In spite of the partly success in somewhat static processes, wherein the system variability does not change as the process runs, recent proliferation of data-driven process analysis techniques offers a new way of determining batch sizes. Taking into account for dynamic changes in variability in the middle of the process, we suggest a model to determine batch size which can adapt to changes in the process variability using the hidden Markov model which exploits sequence of product quality data obtained points of recalibration dynamically by continuously predicting the level of process variability which is inherent in a system but is unknown explicitly. The proposed model enables to determine points of recalibration dynamically by continuously predicting the level of process variability which is inherent in a system but is unknown explicitly. For the illustrative purpose, a system which consists of a material handler and a machining processor is considered and numerical experiments are conducted. It is shown that the proposed model can be useful in determining batch sizes while assuring desired product quality level as well.

Keywords: Adaptive batch size; Data-driven process control; Hidden Markov model; Process variability prediction; Product quality data; System state prediction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-017-1297-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-017-1297-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-017-1297-3

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-017-1297-3