Manufacturing system maintenance based on dynamic programming model with prognostics information
Qinming Liu (),
Ming Dong,
Wenyuan Lv and
Chunming Ye
Additional contact information
Qinming Liu: University of Shanghai for Science and Technology
Ming Dong: Shanghai Jiao Tong University
Wenyuan Lv: University of Shanghai for Science and Technology
Chunming Ye: University of Shanghai for Science and Technology
Journal of Intelligent Manufacturing, 2019, vol. 30, issue 3, No 13, 1155-1173
Abstract:
Abstract The traditional maintenance strategies may result in maintenance shortage or overage, while deterioration and aging information of manufacturing system combined by single important equipment from prognostics models are often ignored. With the higher demand for operational efficiency and safety in industrial systems, predictive maintenance with prognostics information is developed. Predictive maintenance aims to balance corrective maintenance and preventive maintenance by observing and predicting the health status of the system. It becomes possible to integrate the deterioration and aging information into the predictive maintenance to improve the overall decisions. This paper presents an integrated decision model which considers both predictive maintenance and the resource constraint. First, based on hidden semi-Markov model, the system multi-failure states can be classified, and the transition probabilities among the multi-failure states can be generated. The upper triangular transition probability matrix is used to describe the system deterioration, and the changing of transition probability is used to denote the system aging process. Then, a dynamic programming maintenance model is proposed to obtain the optimal maintenance strategy, and the risks of maintenance actions are analyzed. Finally, a case study is used to demonstrate the implementation and potential applications of the proposed methods.
Keywords: Maintenance; Dynamic programming; Prognosis; Deterioration; Aging (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-017-1314-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:3:d:10.1007_s10845-017-1314-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-017-1314-6
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().