EconPapers    
Economics at your fingertips  
 

Deep neural networks based order completion time prediction by using real-time job shop RFID data

Chuang Wang and Pingyu Jiang ()
Additional contact information
Chuang Wang: Xi’an Jiaotong University
Pingyu Jiang: Xi’an Jiaotong University

Journal of Intelligent Manufacturing, 2019, vol. 30, issue 3, No 21, 1303-1318

Abstract: Abstract In the traditional order completion time (OCT) prediction methods, some mutable and ideal production data (e.g., the arrival time of work in process (WIP), the planned processing time of all operations, and the expected waiting time per operation) are often used. Thus, the prediction time always deviates from the actual completion time dramatically even though the dynamicity of the production capacity and the real-time load conditions of job shop are considered in the OCT prediction method. On account of this, a new prediction method of OCT using the composition of order and real-time job shop RFID data is proposed in this article. It applies accurate RFID data to depict the real-time load conditions of job shop, and attempts to mine the mapping relationship between RFID data and OCT from historical data. Firstly, RFID devices capture the types and waiting list information of all WIPs which are in the in-stocks and out-stocks of machining workstations, and the real-time processing progress of all WIPs which are under machining at machining workstations. Secondly, a description model of real-time job shop load conditions is put forward by using the RFID data. Next, the mapping model based on the composition of order and real-time RFID data is established. Finally, deep belief network, which is one of the major technologies of deep neural networks, is applied to mine the mapping relationship. To illustrate the advantages of the proposed method, a numerical experiment compared with back-propagation (BP) network based prediction method, multi-hidden-layers BP network based prediction method and the principal components analysis and BP network based prediction method is conducted at last.

Keywords: Order completion time prediction; Deep neural networks; DBN; RFID (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-017-1325-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:3:d:10.1007_s10845-017-1325-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-017-1325-3

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:30:y:2019:i:3:d:10.1007_s10845-017-1325-3