EconPapers    
Economics at your fingertips  
 

A semantics-based dispatching rule selection approach for job shop scheduling

Heng Zhang () and Utpal Roy
Additional contact information
Heng Zhang: Syracuse University
Utpal Roy: Syracuse University

Journal of Intelligent Manufacturing, 2019, vol. 30, issue 7, No 14, 2759-2779

Abstract: Abstract Dispatching rules are commonly used for job shop scheduling in industries because they are easy to implement, and they yield reasonable solutions within a very short computational time. Many dispatching rules have been developed but they can only perform well in specific scenarios. This is because a dispatching rule or a combination of dispatching rules always pursues a single or multiple fixed production objectives. A lot of approaches (e.g. simulation based or machine learning based approaches) have been published in the literatures attempted to solve the problem of selecting the proper dispatching rules for a given production objective. To select a combination of dispatching rules per randomly selected combination of objectives, this paper investigates a novel semantics-based dispatching rule selection system. Each of the dispatching rules and production objectives relates to a set of scheduling parameters like processing time, remaining work, total work, due date, release date, tardiness, etc. These parameters are semantically interrelated so that a dispatching rule and a production objective can also be semantically related through their semantic expressions. A semantic similarity value can be calculated by comparing their semantic expressions. Based on this idea, a semantics-based dispatching rule selection system for job shop scheduling is developed to generate a combination of dispatching rules given randomly selected combination of production objectives. A proof-of-concept verification process is provided at the end of the paper.

Keywords: Dispatching rule selection; Semantic similarity; Randomly selected production objectives; Job shop scheduling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-018-1421-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:30:y:2019:i:7:d:10.1007_s10845-018-1421-z

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-018-1421-z

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:30:y:2019:i:7:d:10.1007_s10845-018-1421-z