EconPapers    
Economics at your fingertips  
 

Solar cell surface defect inspection based on multispectral convolutional neural network

Haiyong Chen, Yue Pang, Qidi Hu and Kun Liu ()
Additional contact information
Haiyong Chen: Hebei University of Technology
Yue Pang: Hebei University of Technology
Qidi Hu: Hebei University of Technology
Kun Liu: Hebei University of Technology

Journal of Intelligent Manufacturing, 2020, vol. 31, issue 2, No 13, 453-468

Abstract: Abstract Similar and indeterminate defect detection of solar cell surface with heterogeneous texture and complex background is a challenge of solar cell manufacturing. The traditional manufacturing process relies on human eye detection which requires a large number of workers without a stable and good detection effect. In order to solve the problem, a visual defect detection method based on multi-spectral deep convolutional neural network (CNN) is designed in this paper. Firstly, a selected CNN model is established. By adjusting the depth and width of the model, the influence of model depth and kernel size on the recognition result is evaluated. The optimal CNN model structure is selected. Secondly, the light spectrum features of solar cell color image are analyzed. It is found that a variety of defects exhibited different distinguishable characteristics in different spectral bands. Thus, a multi-spectral CNN model is constructed to enhance the discrimination ability of the model to distinguish between complex texture background features and defect features. Finally, some experimental results and K-fold cross validation show that the multi-spectral deep CNN model can effectively detect the solar cell surface defects with higher accuracy and greater adaptability. The accuracy of defect recognition reaches 94.30%. Applying such an algorithm can increase the efficiency of solar cell manufacturing and make the manufacturing process smarter.

Keywords: Machine vision; Solar cell; Deep learning; Defection inspection (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-018-1458-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1458-z

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-018-1458-z

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1458-z