Control chart pattern recognition using the convolutional neural network
Tao Zan (),
Zhihao Liu (),
Hui Wang,
Min Wang and
Xiangsheng Gao
Additional contact information
Tao Zan: Beijing University of Technology
Zhihao Liu: Beijing University of Technology
Hui Wang: Beijing University of Technology
Min Wang: Beijing University of Technology
Xiangsheng Gao: Beijing University of Technology
Journal of Intelligent Manufacturing, 2020, vol. 31, issue 3, No 10, 703-716
Abstract:
Abstract Unnatural control chart patterns (CCPs) usually correspond to the specific factors in a manufacturing process, so the control charts have become important means of the statistical process control. Therefore, an accurate and automatic control chart pattern recognition (CCPR) is of great significance for manufacturing enterprises. In order to improve the CCPR accuracy, experts have designed various complex features, which undoubtedly increases the workload and difficulty of the quality control. To solve these problems, a CCPR method based on a one-dimensional convolutional neural network (1D-CNN) is proposed. The proposed method does not require to extract complex features manually; instead, it uses a 1D-CNN to obtain the optimal feature set from the raw data of the CCPs through the feature learning and completes the CCPR. The dataset for training and validation, containing six typical CCPs, is generated by the Monte-Carlo simulation. Then, the influence of the network structural parameters and activation functions on the recognition performance is analyzed and discussed, and some suggestions for parameter selection are given. Finally, the performance of the proposed method is compared with that of the traditional multi-layer perceptron method using the same dataset. The comparison results show that the proposed 1D-CNN method has obvious advantages in the CCPR tasks. Compared with the related literature, the features extracted by the 1D-CNN are of higher quality. Furthermore, the 1D-CNN trained with simulation dataset still perform well in recognizing the real dataset from the production environment.
Keywords: Control chart; Pattern recognition; Convolutional neural network; Feature learning; Deep learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-019-01473-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01473-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-019-01473-0
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().