EconPapers    
Economics at your fingertips  
 

Monitoring of a machining process using kernel principal component analysis and kernel density estimation

Wo Jae Lee (), Gamini P. Mendis (), Matthew J. Triebe () and John W. Sutherland ()
Additional contact information
Wo Jae Lee: Purdue University
Gamini P. Mendis: Purdue University
Matthew J. Triebe: Purdue University
John W. Sutherland: Purdue University

Journal of Intelligent Manufacturing, 2020, vol. 31, issue 5, No 7, 1175-1189

Abstract: Abstract Tool wear is one of the consequences of a machining process. Excessive tool wear can lead to poor surface finish, and result in a defective product. It can also lead to premature tool failure, and may result in process downtime and damaged components. With this in mind, it has long been desired to monitor tool wear/tool condition. Kernel principal component analysis (KPCA) is proposed as an effective and efficient method for monitoring the tool condition in a machining process. The KPCA-based method may be used to identify faults (abnormalities) in a process through the fusion of multi-sensor signals. The method employs a control chart monitoring approach that uses Hotelling’s T2-statistic and Q-statistic to identify the faults in conjunction with control limits, which are computed by kernel density estimation (KDE). KDE is a non-parametric technique to approximate a probability density function. Four performance metrics, abnormality detection rate, false detection rate, detection delay, and prediction accuracy, are employed to test the reliability of the monitoring system and are used to compare the KPCA-based method with PCA-based method. Application of the proposed monitoring system to experimental data shows that the KPCA based method can effectively monitor the tool wear.

Keywords: Kernel principal component analysis; Control chart; Machining process; Tool condition monitoring (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-019-01504-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01504-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-019-01504-w

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01504-w