EconPapers    
Economics at your fingertips  
 

Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions

Timo Bänziger (), Andreas Kunz () and Konrad Wegener ()
Additional contact information
Timo Bänziger: Smart Production Lab
Andreas Kunz: ETH Zürich
Konrad Wegener: ETH Zürich

Journal of Intelligent Manufacturing, 2020, vol. 31, issue 7, No 4, 1635-1648

Abstract: Abstract Human–robot collaboration is enabled by the digitization of production and has become a key technology for the factory of the future. It combines the strengths of both the human worker and the assistant robot and allows the implementation of an varying degree of automation in workplaces in order to meet the increasing demand of flexibility of manufacturing systems. Intelligent planning and control algorithms are needed for the organization of the work in hybrid teams of humans and robots. This paper introduces an approach to use standardized work description for automated procedure generation of mobile assistant robots. A simulation tool is developed that implements the procedure model and is therefore capable of calculating different objective parameters like production time or ergonomics during a production cycle as a function of the human–robot task allocation. The simulation is validated with an existing workplace in an assembly line at the Volkswagen plant in Wolfsburg, Germany. Furthermore, a new method is presented to optimize the task allocation in human–robot teams for a given workplace, using the simulation as fitness function in a genetic algorithm. The advantage of this new approach is the possibility to evaluate different distributions of the tasks, while considering the dynamics of the interaction between the worker and the robot in their shared workplace. Using the presented approach for a given workplace, an optimized human–robot task allocation is found, in which the tasks are allocated in an intelligent and comprehensible way.

Keywords: Human–robot collaboration; Simulation; Task allocation; Optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-018-1411-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1411-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-018-1411-1

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1411-1