Transfer-robot task scheduling in flexible job shop
Andy Ham ()
Additional contact information
Andy Ham: Liberty University
Journal of Intelligent Manufacturing, 2020, vol. 31, issue 7, No 15, 1783-1793
Abstract:
Abstract This paper studies a simultaneous scheduling of production and material transfer in a flexible job shop environment. The simultaneous scheduling approach has been recently adopted by a robotic mobile fulfillment system, wherein transbots pick up jobs and deliver to pick-stations for processing, which requires a simultaneous scheduling of jobs, transbots, and stations. Two different constraint programming formulations are proposed for the first time for a flexible job shop scheduling problem with transbots, significantly outperforming all other benchmark approaches in the literature and proving optimality of the well-known benchmark instances.
Keywords: Robot task scheduling; Flexible job shop; Simultaneous scheduling; Constraint programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01537-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-020-01537-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01537-6
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().