EconPapers    
Economics at your fingertips  
 

Activation functions selection for BP neural network model of ground surface roughness

Yuhang Pan, Yonghao Wang, Ping Zhou (), Ying Yan and Dongming Guo
Additional contact information
Yuhang Pan: Dalian University of Technology
Yonghao Wang: Dalian University of Technology
Ping Zhou: Dalian University of Technology
Ying Yan: Dalian University of Technology
Dongming Guo: Dalian University of Technology

Journal of Intelligent Manufacturing, 2020, vol. 31, issue 8, No 2, 1825-1836

Abstract: Abstract Roughness prediction of ground surfaces is critical in understanding and optimizing the grinding process. However, it is hitherto difficult to predict accurately the ground surface roughness by theoretical and empirical models due to the complexity of grinding process. BP neural network (BPNN), which can be used to establish the relationship between processing parameters and surface roughness, avoids the difficulty of revealing the complex physical mechanism and thus has unique potential in automatic optimization of grinding process in industrial practice. Activation function is one of the most important factors affecting the efficiency and accuracy of BPNN. Nevertheless, it is often selected arbitrarily or at most by trials or tuning. This paper proposes an activation function selection approach in which virtual data generated from the approximate physical model are employed to evaluate the performance of the BPNN in practice application. The results show that with tansig as the activation function of hidden layer and purelin as the activation function of output layer, the BPNN model can obtain the highest learning efficiency. Moreover, when the activation function of hidden layer is sigmoid, whose shape factor is 1–3, and the output layer activation function is purelin, the model can predict more precisely. Finally, the proposed approach is validated by comparing the performance of BPNN obtained from the virtual data and the experimental data. Obtained results showed that the proposed approach is a simple and effective way to determine the activation function of BPNN.

Keywords: Roughness; Ground surfaces; Grinding process; BP neural network; Activation function (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01538-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01538-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01538-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01538-5