Quality analysis in metal additive manufacturing with deep learning
Xiang Li (),
Xiaodong Jia,
Qibo Yang and
Jay Lee
Additional contact information
Xiang Li: University of Cincinnati
Xiaodong Jia: University of Cincinnati
Qibo Yang: University of Cincinnati
Jay Lee: University of Cincinnati
Journal of Intelligent Manufacturing, 2020, vol. 31, issue 8, No 12, 2003-2017
Abstract:
Abstract As a promising modern technology, additive manufacturing (AM) has been receiving increasing research and industrial attention in the recent years. With its rapid development, the importance of quality monitoring in AM process has been recognized, which significantly affects the property of the manufactured parts. Since the conventional hand-crafted features for quality identification are generally costly, time-consuming and sensitive to noises, the intelligent data-driven automatic process monitoring methods are becoming more and more popular at present. This paper proposes a deep learning-based quality identification method for metal AM process. To alleviate the requirement for large amounts of high-quality labeled training data by most existing data-driven methods, an identification consistency-based approach is proposed to better explore the semi-supervised training data. The proposed method is able to achieve promising performance using limited supervised samples with low quality, such as noisy and blurred images. Experiments on a real-world metal AM dataset are implemented to validate the effectiveness of the proposed method, which offers a promising tool for real industrial applications.
Keywords: Additive manufacturing; Process monitoring; Quality identification; Deep learning; Low-quality data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01549-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01549-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01549-2
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().