EconPapers    
Economics at your fingertips  
 

Design optimization by integrating limited simulation data and shape engineering knowledge with Bayesian optimization (BO-DK4DO)

Jia Hao (), Mengying Zhou (), Guoxin Wang (), Liangyue Jia () and Yan Yan ()
Additional contact information
Jia Hao: Beijing Institute of Technology
Mengying Zhou: Beijing Institute of Technology
Guoxin Wang: Beijing Institute of Technology
Liangyue Jia: Beijing Institute of Technology
Yan Yan: Beijing Institute of Technology

Journal of Intelligent Manufacturing, 2020, vol. 31, issue 8, No 15, 2049-2067

Abstract: Abstract Surrogate models have been widely studied for optimization tasks in the domain of engineering design. However, the expensive and time-consuming simulation cycles needed for complex products always result in limited simulation data, which brings a challenge for building high accuracy surrogate models because of the incomplete information contained in the limited simulation data. Therefore, a method that builds a surrogate model and conducts design optimization by integrating limited simulation data and engineering knowledge through Bayesian optimization (BO-DK4DO) is presented. In this method, the shape engineering knowledge is considered and used as derivative information which is integrated with the limited simulation data with a Gaussian process (GP). Then the GP is updated sequentially by sampling new simulation data and the optimal design solutions are found by maximizing the GP. The aim of BO-DK4DO is to significantly reduce the required number of computer simulations for finding optimal design solutions. The BO-DK4DO is verified by using benchmark functions and an engineering design problem: hot rod rolling. In all scenarios, the BO-DK4DO shows faster convergence rate than the general Bayesian optimization without integrating engineering knowledge, which means the required amount of data is decreased.

Keywords: Bayesian optimization; Limited simulation data; Engineering knowledge; Surrogate model; Design optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01551-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01551-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01551-8

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01551-8