EconPapers    
Economics at your fingertips  
 

DAMER: a novel diagnosis aggregation method with evidential reasoning rule for bearing fault diagnosis

Gang Wang (), Feng Zhang, Bayi Cheng and Fang Fang
Additional contact information
Gang Wang: Hefei University of Technology
Feng Zhang: Hefei University of Technology
Bayi Cheng: Hefei University of Technology
Fang Fang: Hefei University of Technology

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 1, No 1, 20 pages

Abstract: Abstract Ensemble learning method has shown its superiority in bearing fault diagnosis based on the condition based monitoring. Nevertheless, features extracted from the monitoring signals of bearing systems often contain interrelated and redundant components, leading to poor performances of the base classifiers in the ensemble. Moreover, the current ensemble methods rely on voting strategies to aggregate the diagnostic predictions of these base classifiers without considering their reliabilities and weights simultaneously. To address the aforementioned issues, we propose a novel Diagnosis Aggregation Method with Evidential Reasoning rule, i.e., DAMER, for bearing fault diagnosis. In this method, a semi-random subspace approach using a structured sparsity learning model is developed to decrease the negative effect of interrelated and redundant features, and in the meanwhile to generate accurate and diverse base classifiers. Furthermore, an adaptive evidential reasoning rule (ER rule) incorporating with ensemble learning theory is utilized to aggregate the diagnostic predictions of the base classifiers by taking both their weights and reliabilities into account. To validate the proposed DAMER, an empirical study is conducted on Case Western Reserve University bearing vibration dataset, and the experimental results verify the effectiveness of the proposed DAMER as well as its superiority over commonly used ensemble methods. The performances of feature subsets from multiple domains and the aggregation capability of the adaptive ER rule were also investigated. Results illustrate that DAMER can be utilized as an effective method for bearing fault diagnosis.

Keywords: Bearing fault diagnosis; Condition based monitoring; Ensemble learning; Structured sparsity learning; Evidential reasoning rule (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01554-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01554-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01554-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01554-5