EconPapers    
Economics at your fingertips  
 

Discriminative feature learning and cluster-based defect label reconstruction for reducing uncertainty in wafer bin map labels

Seyoung Park, Jaeyeon Jang and Chang Ouk Kim ()
Additional contact information
Seyoung Park: Yonsei University
Jaeyeon Jang: Yonsei University
Chang Ouk Kim: Yonsei University

Journal of Intelligent Manufacturing, 2021, vol. 32, issue 1, No 16, 263 pages

Abstract: Abstract Many studies have been conducted to improve wafer bin map (WBM) defect classification performance because accurate WBM classification can provide information about abnormal processes causing a decrease in yield. However, in the actual manufacturing field, the manual labeling performed by engineers leads to a high level of uncertainty. Label uncertainty has been a major cause of the reduction in WBM classification system performance. In this paper, we propose a class label reconstruction method for subdividing a defect class with various patterns into several groups, creating a new class for defect samples that cannot be categorized into known classes and detecting unknown defects. The proposed method performs discriminative feature learning of the Siamese network and repeated cross-learning of the class label reconstruction based on Gaussian means clustering in a learned feature space. We verified the proposed method using a real-world WBM dataset. In a situation where there the class labels of the training dataset were corrupted, the proposed method could increase the classification accuracy of the test dataset by enabling the corrupted sample to find its original class label. As a result, the accuracy of the proposed method was up to 7.8% higher than that of the convolutional neural network (CNN). Furthermore, through the proposed class label reconstruction, we found a new mixed-type defect class that had not been found until now, and we detected new types of unknown defects that were not used for learning with an average accuracy of over 73%.

Keywords: Wafer bin map; Label uncertainty; Class label reconstruction; Unknown defect detection; Siamese network; G-means clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01571-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01571-4

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01571-4

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01571-4