A flexible alarm prediction system for smart manufacturing scenarios following a forecaster–analyzer approach
Kevin Villalobos (),
Johan Suykens () and
Arantza Illarramendi ()
Additional contact information
Kevin Villalobos: University of the Basque Country UPV/EHU
Johan Suykens: Katholieke Universiteit Leuven
Arantza Illarramendi: University of the Basque Country UPV/EHU
Journal of Intelligent Manufacturing, 2021, vol. 32, issue 5, No 6, 1323-1344
Abstract:
Abstract The introduction of data-related information technologies in manufacturing allows to capture large volumes of data from the sensors monitoring the production processes and different alarms associated to them. An early prediction of those alarms can bring several benefits to manufacturing companies such as predictive maintenance of the equipment, or production optimization. This paper introduces a new system that allows to anticipate the activation of several alarms and thus, warns the operators in the plants about situations that could hamper the machines operation or stop the production process. The system follows a two-stage forecaster–analyzer approach on which first, a long short-term memory recurrent neural network based forecaster predicts the future sensor’s measurements and then, distinct analyzers based on residual neural networks determine whether the predicted measurements will trigger an alarm or not. The system supports some features that make it particularly suitable for smart manufacturing scenarios: on the one hand, the forecaster is able to predict the future measurements of different types of time-series data captured by various sensors in non-stationary environments with dynamically changing processes. On the other hand, the analyzers are able to detect alarms that can be modeled with simple rules based on the activation condition, and also more complex alarms on which it is unknown when the activation condition will be fulfilled. Moreover, the followed approach for building the system makes it flexible and extensible for other predictive analysis tasks. The system has shown a great performance to predict three different types of alarms.
Keywords: Alarm prediction; Data-driven predictive maintenance; Long short-term memory (LSTM); Residual neural networks (ResNet); Time series forecasting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01614-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01614-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-020-01614-w
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().