EconPapers    
Economics at your fingertips  
 

Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion

Sebastian Larsen and Paul A. Hooper ()
Additional contact information
Sebastian Larsen: Imperial College London
Paul A. Hooper: Imperial College London

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 2, No 5, 457-471

Abstract: Abstract Highly complex data streams from in-situ additive manufacturing (AM) monitoring systems are becoming increasingly prevalent, yet finding physically actionable patterns remains a key challenge. Recent AM literature utilising machine learning methods tend to make predictions about flaws or porosity without considering the dynamical nature of the process. This leads to increases in false detections as useful information about the signal is lost. This study takes a different approach and investigates learning a physical model of the laser powder bed fusion process dynamics. In addition, deep representation learning enables this to be achieved directly from high speed videos. This representation is combined with a predictive state space model which is learned in a semi-supervised manner, requiring only the optimal laser parameter to be characterised. The model, referred to as FlawNet, was exploited to measure offsets between predicted and observed states resulting in a highly robust metric, known as the dynamic signature. This feature also correlated strongly with a global material quality metric, namely porosity. The model achieved state-of-the-art results with a receiver operating characteristic (ROC) area under curve (AUC) of 0.999 when differentiating between optimal and unstable laser parameters. Furthermore, there was a demonstrated potential to detect changes in ultra-dense, 0.1% porosity, materials with an ROC AUC of 0.944, suggesting an ability to detect anomalous events prior to the onset of significant material degradation. The method has merit for the purposes of detecting out of process distributions, while maintaining data efficiency. Subsequently, the generality of the methodology would suggest the solution is applicable to different laser processing systems and can potentially be adapted to a number of different sensing modalities.

Keywords: Additive manufacturing (AM); Anomaly detection; Deep learning; Dynamics; Laser powder bed fusion (L-PBF); State space models (SSM) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01842-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01842-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01842-8

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01842-8