A review of motion planning algorithms for intelligent robots
Chengmin Zhou,
Bingding Huang and
Pasi Fränti ()
Additional contact information
Chengmin Zhou: University of Eastern Finland
Bingding Huang: Shenzhen Technology University
Pasi Fränti: University of Eastern Finland
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 2, No 2, 387-424
Abstract:
Abstract Principles of typical motion planning algorithms are investigated and analyzed in this paper. These algorithms include traditional planning algorithms, classical machine learning algorithms, optimal value reinforcement learning, and policy gradient reinforcement learning. Traditional planning algorithms investigated include graph search algorithms, sampling-based algorithms, interpolating curve algorithms, and reaction-based algorithms. Classical machine learning algorithms include multiclass support vector machine, long short-term memory, Monte-Carlo tree search and convolutional neural network. Optimal value reinforcement learning algorithms include Q learning, deep Q-learning network, double deep Q-learning network, dueling deep Q-learning network. Policy gradient algorithms include policy gradient method, actor-critic algorithm, asynchronous advantage actor-critic, advantage actor-critic, deterministic policy gradient, deep deterministic policy gradient, trust region policy optimization and proximal policy optimization. New general criteria are also introduced to evaluate the performance and application of motion planning algorithms by analytical comparisons. The convergence speed and stability of optimal value and policy gradient algorithms are specially analyzed. Future directions are presented analytically according to principles and analytical comparisons of motion planning algorithms. This paper provides researchers with a clear and comprehensive understanding about advantages, disadvantages, relationships, and future of motion planning algorithms in robots, and paves ways for better motion planning algorithms in academia, engineering, and manufacturing.
Keywords: Motion planning; Path planning; Intelligent robots; Reinforcement learning; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01867-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01867-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01867-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().