EconPapers    
Economics at your fingertips  
 

Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification

Chia-Yu Hsu () and Ju-Chien Chien
Additional contact information
Chia-Yu Hsu: National Taipei University of Technology
Ju-Chien Chien: National Tsing Hua University

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 3, No 13, 844 pages

Abstract: Abstract Wafer bin maps (WBM) provides crucial information regarding process abnormalities and facilitate the diagnosis of low-yield problems in semiconductor manufacturing. Most studies of WBM classification and analysis apply a statistical-based method or machine learning method operating on raw wafer data and extracted features. With increasing WBM pattern diversity and complexity, the useful features for effective WBM recognition are highly dependent on domain knowledge. This study proposes an ensemble convolutional neural network (ECNN) framework for WBM pattern classification, in which a weighted majority function is adopted to select higher weights for the base classifiers that have higher predictive performance. An industrial WBM dataset (namely, WM-811K) from a wafer fabrication process was used to demonstrate the effectiveness of the proposed ECNN framework. The proposed ECNN has superior performance in terms of precision, recall, F1 and other conventional machine learning classifiers such as linear regression, random forest, gradient boosting machine, and artificial neural network. The experimental results show that the proposed ECNN framework is able to identify common WBM defect patterns effectively.

Keywords: Wafer bin map; Deep learning; Convolutional neural network; Ensemble classification; Weighted majority; Semiconductor manufacturing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-020-01687-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01687-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-020-01687-7

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01687-7