Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks
Tobias Schlosser (),
Michael Friedrich (),
Frederik Beuth () and
Danny Kowerko ()
Additional contact information
Tobias Schlosser: Chemnitz University of Technology
Michael Friedrich: Chemnitz University of Technology
Frederik Beuth: Chemnitz University of Technology
Danny Kowerko: Chemnitz University of Technology
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 4, No 14, 1099-1123
Abstract:
Abstract In the semiconductor industry, automated visual inspection aims to improve the detection and recognition of manufacturing defects by leveraging the power of artificial intelligence and computer vision systems, enabling manufacturers to profit from an increased yield and reduced manufacturing costs. Previous domain-specific contributions often utilized classical computer vision approaches, whereas more novel systems deploy deep learning based ones. However, a persistent problem in the domain stems from the recognition of very small defect patterns which are often in the size of only a few $$\mu $$ μ m and pixels within vast amounts of high-resolution imagery. While these defect patterns occur on the significantly larger wafer surface, classical machine and deep learning solutions have problems in dealing with the complexity of this challenge. This contribution introduces a novel hybrid multistage system of stacked deep neural networks (SH-DNN) which allows the localization of the finest structures within pixel size via a classical computer vision pipeline, while the classification process is realized by deep neural networks. The proposed system draws the focus over the level of detail from its structures to more task-relevant areas of interest. As the created test environment shows, our SH-DNN-based multistage system surpasses current approaches of learning-based automated visual inspection. The system reaches a performance (F1-score) of up to 99.5%, corresponding to a relative improvement of the system’s fault detection capabilities by 8.6-fold. Moreover, by specifically selecting models for the given manufacturing chain, runtime constraints are satisfied while improving the detection capabilities of currently deployed approaches.
Keywords: Computer vision; Pattern and image recognition; Deep learning; Semiconductor manufacturing; Factory automation; Fault inspection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01906-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-021-01906-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01906-9
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().