On reliability of reinforcement learning based production scheduling systems: a comparative survey
Constantin Waubert de Puiseau (),
Richard Meyes and
Tobias Meisen
Additional contact information
Constantin Waubert de Puiseau: University of Wuppertal
Richard Meyes: University of Wuppertal
Tobias Meisen: University of Wuppertal
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 4, No 1, 927 pages
Abstract:
Abstract The deep reinforcement learning (DRL) community has published remarkable results on complex strategic planning problems, most famously in virtual scenarios for board and video games. However, the application to real-world scenarios such as production scheduling (PS) problems remains a challenge for current research. This is because real-world application fields typically show specific requirement profiles that are often not considered by state-of-the-art DRL research. This survey addresses questions raised in the domain of industrial engineering regarding the reliability of production schedules obtained through DRL-based scheduling approaches. We review definitions and evaluation measures of reliability both, in the classical numerical optimization domain with focus on PS problems and more broadly in the DRL domain. Furthermore, we define common ground and terminology and present a collection of quantifiable reliability definitions for use in this interdisciplinary domain. Concludingly, we identify promising directions of current DRL research as a basis for tackling different aspects of reliability in PS applications in the future.
Keywords: Reinforcement learning; Production scheduling; Reliability; Robustness; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-01915-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-022-01915-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-022-01915-2
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().