A machine vision-based defect detection system for nuclear-fuel rod groove
Xinyu Suo,
Jian Liu (),
Licheng Dong,
Chen Shengfeng,
Lu Enhui and
Chen Ning
Additional contact information
Xinyu Suo: Hunan University
Jian Liu: Hunan University
Licheng Dong: Hunan University
Chen Shengfeng: Hunan University
Lu Enhui: Hunan University
Chen Ning: Hunan University
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 6, No 5, 1649-1663
Abstract:
Abstract The processing quality of the grooves of a nuclear-fuel rod will directly affect the quality of the finished nuclear-fuel rod. Due to the highly reflective, microscopic, and annular characteristics of nuclear-fuel rod grooves, it has been quite challenging to realize imaging and microscopic defect detection for these grooves. In this work, a machine vision-based defect detection system was developed for nuclear-fuel rod grooves. Through the performance improvement and application of the self-reference template defect detection method, efficient online inspection of nuclear-fuel rod grooves was realized. In the developed system, a combined-light-source imaging system was first designed by combining a coaxial light and a ring light, which realized the clear imaging of a groove. After that, an image expansion strategy was employed to expand the annular groove into a strip-shaped region of interest (ROI). Then, according to the turning processing characteristic of the nuclear-fuel rod groove, the large-size defect detection effect of the self-reference template method was improved by eliminating the anomalous columns prior to generating the self-reference template. The experimental results indicated that the average inspection efficiency of the developed system was 8.026 s/rod, the average false detection rate was 0.183%. The accuracy of the self-reference template method was 87.6%, higher than that of YOLOv2 and Faster R-CNN. The developed system exhibits high inspection efficiency and accuracy, so it can meet the actual detection functions and requirements of production lines, and now it has been successfully applied to actual production.
Keywords: Machine vision; Self-reference technique; Defect detection; Combined light source design; Microscopic inspection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01746-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01746-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01746-7
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().