Fuzzy harmony search based optimal control strategy for wireless cyber physical system with industry 4.0
Mustufa Haider Abidi (),
Hisham Alkhalefah and
Usama Umer
Additional contact information
Mustufa Haider Abidi: King Saud University
Hisham Alkhalefah: King Saud University
Usama Umer: King Saud University
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 6, No 14, 1795-1812
Abstract:
Abstract Recently, Industry 4.0 facilitates implementing several modular smart factories particularly the Cyber-Physical System. Due to enhanced growth in the Cyber-Physical System, privacy and security issues turned out to be the most significant factor all over the world. This paper demonstrates a complete co-design approach meant for integrating the cyberspace and physical space of a cyber-physical system. Various strategies and models regarding cyber and physical space are established in CPS. Apart from numerous co-design strategies, there are several parameters yet to be resolved and established. It becomes complicated and tricky to examine and explore the extremely best value since these parameters make up a very huge space. Therefore, a metaheuristic algorithm such as improved Fuzzy Harmonic Search Algorithm is proposed to optimize the control parameters so as to obtain a feasible solution. Also, this approach minimizes the cost function using Maximum Allowable Delay Bound (MADB) when subjected to several constraints such as the Sampling period, Horizon length, Routing graph, and scheduling table. Moreover the comparative analyses of various approaches such as Fuzzy Harmony Search (FHS) algorithm, Harmony Search (HS) algorithm, Grey Wolf Optimization Algorithm (GWO), Particle Swarm Optimization (PSO) algorithm, Differential Evolution (DE) algorithm as well as Fuzzy Genetic Algorithm (Fuzzy GA) are evaluated to examine the performances of the proposed approach. A testbed is organized for evaluation and exploration in a manufacturing atmosphere. The result reveals that this proposed approach provides enhanced control performance and communication reliability even under very harsh environmental habitat.
Keywords: Cyber-physical system; Maximum allowable delay bound; Fuzzy harmony search; Scheduling; Industry 4.0 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01757-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01757-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01757-4
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().