EconPapers    
Economics at your fingertips  
 

Applications of artificial intelligence in engineering and manufacturing: a systematic review

Isaac Nti, Adebayo Felix Adekoya, Benjamin Asubam Weyori and Owusu Nyarko-Boateng
Additional contact information
Adebayo Felix Adekoya: University of Energy and Natural Resources
Benjamin Asubam Weyori: University of Energy and Natural Resources
Owusu Nyarko-Boateng: University of Energy and Natural Resources

Journal of Intelligent Manufacturing, 2022, vol. 33, issue 6, No 2, 1601 pages

Abstract: Abstract Engineering and manufacturing processes and systems designs involve many challenges, such as dynamism, chaotic behaviours, and complexity. Of late, the arrival of big data, high computational speed, cloud computing and artificial intelligence techniques (like machine learning and deep learning) has reformed how many engineering and manufacturing professionals approach their work. These technologies offer thrilling innovative ways for engineers and manufacturers to tackle real-life challenges. On the other hand, the field of Artificial Intelligence (AI) is extensive. Several diverse theories, algorithms, and methods are available, which presents a challenge and a barrier in choosing the right AI technique for the appropriate engineering process or manufacturing process and environments. Besides, the pertinent literature is disseminated over various journals, conference proceedings, and research communities. Hence, conducting a systematic survey to scrutinise and classify the existing literature is worthwhile. However, it is challenging, but previous review studies have not adequately addressed AI’s use and advancement in engineering and manufacturing (EM). Besides, some concentrated on single AI models, and others focused on a specific area in EM. This paper presents a comprehensive systematic review of studies on AI and its application in EM. To limit the scope of the current study, we conducted a keyword search in official publisher websites and academic databases, such as Springer, Elsevier, Scopus, Science Publication, Taylor & Francis, Directory of Open Access Journals (DOAJ), Association for Computing Machinery (ACM), Wiley online library, Inderscience and Google scholar. The search results (173 articles) were filtered according to a proposed framework, which resulted in ninety-one (91) relevant research articles. We reviewed the articles based on a proposed taxonomy (the year of publication, the AI algorithm and machine learning task adopted, the application area in EM, the train and test split of data, the error, and accuracy metrics used, the potential benefits). Our assessment using the proposed taxonomy gave a helpful insight into the literature’s anatomy on various AI applications in engineering and manufacturing. Also, we identified opportunities for future research in AI application in the field of EM.

Keywords: Artificial intelligence; Machine learning; Manufacturing process; Engineering process; Decision making (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01771-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01771-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01771-6

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01771-6