Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion
Yong Ren () and
Qian Wang ()
Additional contact information
Yong Ren: The Pennsylvania State University
Qian Wang: The Pennsylvania State University
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 8, No 4, 2239-2256
Abstract:
Abstract Studies have shown that melt-pool characteristics such as melt-pool size and shape are highly correlated with the formation of porosity and defects in parts built with the laser powder bed fusion (L-PBF) additive manufacturing (AM) processes. Hence, optimizing process parameters to maintain a constant melt-pool size during the build process could potentially improve the build quality of the final part. This paper considers the optimal control of laser power, while keeping other process parameters fixed, to achieve a constant melt-pool size during the laser scanning of a multi-track build under L-PBF. First, Gaussian process regression (GPR) is applied to model the dynamic evolution of the melt-pool size as a function of laser power and thermal history, which are defined as the input features of the GPR model. Then a constrained finite-horizon optimal control problem is formulated, with a quadratic cost function defined to minimize the difference between the controlled melt-pool size and its reference value. A projected gradient descent algorithm is applied to compute the optimal sequence of laser power in the proposed control problem. The GPR modeling is demonstrated using simulated data sets, a mix of simulated and experimental data sets, or pure experimental data sets. Numerical verification of the control design of laser power is performed on a commercial AM software, Autodesk’s Netfabb Simulation. Simulation results demonstrate the effectiveness of the proposed GPR modeling and model-based optimal control in regulating the melt-pool size during the scanning of multi-tracks using L-PBF.
Keywords: Laser powder bed fusion; Gaussian process regression; Optimal control; Multi-track; Melt-pool geometry (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01781-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01781-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01781-4
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().