Quality monitoring in multistage manufacturing systems by using machine learning techniques
Mohamed Ismail (),
Noha A. Mostafa () and
Ahmed El-assal ()
Additional contact information
Mohamed Ismail: Benha University
Noha A. Mostafa: The British University in Egypt
Ahmed El-assal: Benha University
Journal of Intelligent Manufacturing, 2022, vol. 33, issue 8, No 17, 2486 pages
Abstract:
Abstract Manufacturing and production processes have become more complicated and usually consist of multiple stages to meet customers' requirements. This poses big challenges for quality monitoring due to the vast amount of data and the interactive effects of many factors on the final product quality. This research introduces a smart real-time quality monitoring and inspection framework capable of predicting and determining the quality deviations for complex and multistage manufacturing systems as early as possible; introduces a hybrid quality inspection approach based on both predictive models and physical inspection in order to enhance the quality monitoring process, save resources, reduce inspection time and costs. Several supervised and unsupervised machine learning techniques such as support vector machine, random forest, artificial neural network, principal component analysis were used to build the quality monitoring model with considering the cumulative effects of different manufacturing stages and the unbalance and dynamic nature of the manufacturing processes. A complex semiconductor manufacturing dataset was used to verify and assess the performance of the proposed framework. The results prove the ability of the suggested framework to enhance the quality monitoring process in multistage manufacturing systems and the ability of the hybrid quality inspection approach to reduce the inspection volume and cost.
Keywords: Multistage manufacturing; Quality prediction; Quality monitoring; Industry 4.0; Machine learning; Smart manufacturing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01792-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01792-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01792-1
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().