Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective
SungKu Kang (),
Ran Jin (),
Xinwei Deng () and
Ron Kenett
Additional contact information
SungKu Kang: Virginia Polytechnic Institute and State University
Ran Jin: Virginia Polytechnic Institute and State University
Xinwei Deng: Virginia Polytechnic Institute and State University
Journal of Intelligent Manufacturing, 2023, vol. 34, issue 2, No 1, 415-428
Abstract:
Abstract In Industry 4.0, smart manufacturing is facing its next stage, cybermanufacturing, founded upon advanced communication, computation, and control infrastructure. Cybermanufacturing will unleash the potential of multi-modal manufacturing data, and provide a new perspective called computation service, as a part of service-oriented architecture (SOA), where on-demand computation requests throughout manufacturing operations are seamlessly satisfied by data analytics and machine learning. However, the complexity of information technology infrastructure leads to fundamental challenges in modeling and analysis under cybermanufacturing, ranging from information-poor datasets to a lack of reproducibility of analytical studies. Nevertheless, existing reviews have focused on the overall architecture of cybermanufacturing/SOA or its technical components (e.g., communication protocol), rather than the potential bottleneck of computation service with respect to modeling and analysis. In this paper, we review the fundamental challenges with respect to modeling and analysis in cybermanufacturing. Then, we introduce the existing efforts in computation pipeline recommendation, which aims at identifying an optimal sequence of method options for data analytics/machine learning without time-consuming trial-and-error. We envision computation pipeline recommendation as a promising research field to address the fundamental challenges in cybermanufacturing. We also expect that computation pipeline recommendation can be a driving force to flexible and resilient manufacturing operations in the post-COVID-19 industry.
Keywords: Computation pipelines; Cybermanufacturing; Industry 4.0; Machine learning; Manufacturing modeling and analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01817-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01817-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-021-01817-9
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().