EconPapers    
Economics at your fingertips  
 

Analysis of link failures and recoveries on 6to4 tunneling network with different routing protocol

Neha Jain (), Ashish Payal and Aarti Jain
Additional contact information
Neha Jain: USICT, GGSIPU
Ashish Payal: USICT, GGSIPU
Aarti Jain: NSUT

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 3, No 7, 1037-1063

Abstract: Abstract Failure recovery is an essential discussion in communication to guarantee the network's undisturbed and reliable service. Failed links have been affecting the communication network performance for various real-time applications for many years. Thus, it is necessary to address the issue, as it affects both users and service provider’s, leading to catastrophic collapse and cascading or interdependent failures. Therefore, designing a survivable network is the primary concern. Estimating and predicting network performance in advance for network survivability and traffic reachability is advantageous for network engineers. Therefore, in this paper, we analyze the network performance by failing and recovering network links for multiple time durations. The 6to4 tunneling network has been configured where two isolated IPv6 networks are connected through the tunnel's to the IPv4 backbone network, and we have failed the links that are connecting these networks. The 6to4 automatic and manual tunneling networks are defined separately. The network is simulated using Routing Information Protocol/Routing Information Protocol Next Generation and Open Shortest Path First/Open Shortest Path First version 3 for real-time voice and video streaming applications. The network's performance is calculated for links over each routing protocol and tunneling technique in these cases. Therefore, this analysis allows us the pre-computation of performance for failing the main link connecting the IPv6 networks to the IPv4 backbone network or vice-versa. The performance parameters studied and evaluated in this paper are network convergence, traffic dropped, throughput, queuing delay, and router performance. The different route table characteristics for Router A, Router C, and IPv4 backbone are also analyzed as links between them are failed and recovered multiple times. This novel analysis and discussion bring out a practical, realistic analysis of recovery and system vulnerability.

Keywords: RIP; OSPF; 6to4 tunnel; Network failure recovery; Network resilience (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-021-01835-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01835-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-021-01835-7

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01835-7