EconPapers    
Economics at your fingertips  
 

A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing

Jia Liu (), Jiafeng Ye, Daniel Silva Izquierdo, Aleksandr Vinel, Nima Shamsaei and Shuai Shao
Additional contact information
Jia Liu: Auburn University
Jiafeng Ye: Auburn University
Daniel Silva Izquierdo: Auburn University
Aleksandr Vinel: Auburn University
Nima Shamsaei: Auburn University
Shuai Shao: Auburn University

Journal of Intelligent Manufacturing, 2023, vol. 34, issue 8, No 2, 3249-3275

Abstract: Abstract Laser beam powder bed fusion (LB-PBF) is a widely-used metal additive manufacturing process due to its high potential for fabrication flexibility and quality. Its process and performance optimization are key to improving product quality and promote further adoption of LB-PBF. In this article, the state-of-the-art machine learning (ML) applications for process and performance optimization in LB-PBF are reviewed. In these applications, ML is used to model the process-structure–property relationships in a data-driven way and optimize process parameters for high-quality fabrication. We review these applications in terms of their modeled relationships by ML (e.g., process—structure, process—property, or structure—property) and categorize the ML algorithms into interpretable ML, conventional ML, and deep ML according to interpretability and accuracy. This way may be particularly useful for practitioners as a comprehensive reference for selecting the ML algorithms according to the particular needs. It is observed that of the three types of ML above, conventional ML has been applied in process and performance optimization the most due to its balanced performance in terms of model accuracy and interpretability. To explore the power of ML in discovering new knowledge and insights, interpretation with additional steps is often needed for complex models arising from conventional ML and deep ML, such as model-agnostic methods or sensitivity analysis. In the future, enhancing the interpretability of ML, standardizing a systemic procedure for ML, and developing a collaborative platform to share data and findings will be critical to promote the integration of ML in LB-PBF applications on a large scale.

Keywords: Machine learning; Laser beam powder bed fusion; Process and performance optimization; Process-structure–property relationships; Prediction accuracy; Interpretability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02012-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:34:y:2023:i:8:d:10.1007_s10845-022-02012-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-02012-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joinma:v:34:y:2023:i:8:d:10.1007_s10845-022-02012-0