Material removal rate prediction in chemical mechanical planarization with conditional probabilistic autoencoder and stacking ensemble learning
Yupeng Wei () and
Dazhong Wu ()
Additional contact information
Yupeng Wei: San Jose State University
Dazhong Wu: University of Central Florida
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 1, No 7, 115-127
Abstract:
Abstract Chemical mechanical planarization (CMP) is a complex and high-accuracy polishing process that creates a smooth and planar material surface. One of the key challenges of CMP is to predict the material removal rate (MRR) accurately. With the development of artificial intelligence techniques, numerous data-driven models have been developed to predict the MRR in the CMP process. However, these methods are not capable of considering surface topography in MRR predictions because it is difficult to observe and measure the surface topography. To address this issue, we propose a graphical model and a conditional variational autoencoder to extract the features of surface topography in the CMP process. Moreover, process variables and the extracted features of surface topography are fed into an ensemble learning-based predictive model to predict the MRR. Experimental results have shown that the proposed method can predict the MRR accurately with a root mean squared error of 6.12 nm/min, and it outperforms physics-based machine learning and data-driven methods.
Keywords: Chemical mechanical planarization; Deep learning; Graphical model; Material removal rate prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02040-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02040-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-022-02040-w
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().