Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing
Bianca Maria Colosimo (),
Luca Pagani () and
Marco Grasso ()
Additional contact information
Bianca Maria Colosimo: Politecnico di Milano
Luca Pagani: Carl Zeiss GOM Metrology
Marco Grasso: Politecnico di Milano
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 1, No 25, 429-447
Abstract:
Abstract For an increasing number of applications, the quality and the stability of manufacturing processes can be determined via image and video-image data analysis and new techniques are required to extract and synthesize the relevant information content enclosed in big sensor data to draw conclusions about the process and the final part quality. This paper focuses on video image data where the phenomena under study is captured by a point process whose spatial signature is of interest. A novel approach is proposed which combines spatial data modeling via Ripley’s K-function with Functional Analysis of Variance (FANOVA), i.e., Analysis of Variance on Functional data. The K-function allows to synthesize the spatial pattern information in a function while preserving the capability to capture changes in the process behavior. The method is applicable to quantities and phenomena that can be represented as clusters, or clouds, of spatial points evolving over time. In our case, the motivating case study regards the analysis of spatter ejections caused by the laser-material interaction in Additive Manufacturing via Laser Powder Bed Fusion (L-PBF). The spatial spread of spatters, captured in the form of point particles through in-situ high speed machine vision, can be used as a proxy to select the best conditions to avoid defects (pores) in the manufactured part. The proposed approach is shown to be not only an efficient way to translate the high-dimensional video image data into a lower dimensional format (the K-function curves), but also more effective than benchmark methods in detecting departures from a stable and in-control state.
Keywords: Spatial point pattern; K-function; Functional data; FANOVA; Additive Manufacturing; Spatters; Laser powder bed fusion; Industry 4.0 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02055-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02055-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-022-02055-3
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().