EconPapers    
Economics at your fingertips  
 

A novel hybrid framework for single and multi-robot path planning in a complex industrial environment

Sunil Kumar () and Afzal Sikander ()
Additional contact information
Sunil Kumar: Dr B R Ambedkar NIT Jalandhar
Afzal Sikander: Dr B R Ambedkar NIT Jalandhar

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 2, No 7, 587-612

Abstract: Abstract Optimum path planning is a fundamental necessity for the successful functioning of a mobile robot in industrial applications. This research work investigates the application of the artificial bee colony (ABC) approach, probabilistic roadmap (PRM) method, and evolutionary programming (EP) algorithm to tackle the issue of single and multi-robot path planning in partially known or unknown industrial complex environments. Conventional techniques depend on external factors such as delay of information from one bee's stage to another for selecting neighbour food points. Due to this, its efficiency is comparatively low and might result in longer runtimes. To address these challenges, a novel hybrid framework based on ABC-PRM-EP has been introduced. Firstly, a suboptimal initial feasible path is attained by a new framework (ABC-PRM) within the mobile robot sensor detection range. Then, EP performs refinement of that attained suboptimal path to provide a short and optimum path. Also, a multi-robot collaboration strategy has been introduced based on the concept of hold-up. A number of comparative studies have been conducted in three different test scenarios with different complexity to validate the proposed framework efficiency and performance. Different performance indices such as path length (m), smoothness (rad), collision safety value, success rate, processing time (s), and convergence speed have been measured to validate the effectiveness of the proposed framework. The comparative analysis obtained from these test scenarios indicates that the proposed framework outperforms conventional ABC, ABC-EP and HPSO-GWO-EA, while performing path planning.

Keywords: Path planning; Artificial bee colony; Probabilistic roadmap approach; Evolutionary programming; Mobile robot; Multi-robot path planning (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02056-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02056-2

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-022-02056-2

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02056-2