Global and local representation collaborative learning for few-shot learning
Jun Zhou () and
Qingling Cai ()
Additional contact information
Jun Zhou: Sun Yat-Sen University
Qingling Cai: Sun Yat-Sen University
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 2, No 10, 647-664
Abstract:
Abstract The objective of few-shot learning (FSL) is to learn a model that can quickly adapt to novel classes with only few examples. Recent works have shown that a powerful representation with a base learner trained in supervised and self-supervised manners has significant advantages over the existing sophisticated FSL algorithms. In this paper, we build on this insight and propose a new framework called global and local representation collaborative learning (GLCL), which combines the complementary advantages of global equivariance and local aggregation. Global equivariance learns the internal structure of data to improve class discrimination, and the local aggregation retains important semantic information to enrich feature representations. In addition, we design a cross-view contrastive learning to promote the consistent learning and implicit exploration of useful knowledge from one another. A simultaneous optimization of these contrasting objectives allows the model to encode informative features while maintaining strong generalization capabilities for new tasks. We demonstrate consistent and substantial performance gains for FSL classification tasks on multiple datasets. Our code is available at https://github.com/zjgans/GLCL .
Keywords: Few-shot learning; Global equivariance; Local aggregation; Contrastive learning; Meta-learning (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02066-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02066-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-022-02066-0
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().