Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning
Felix Grumbach (),
Anna Müller (),
Pascal Reusch () and
Sebastian Trojahn ()
Additional contact information
Felix Grumbach: Bielefeld University of Applied Sciences
Anna Müller: Bielefeld University of Applied Sciences
Pascal Reusch: Bielefeld University of Applied Sciences
Sebastian Trojahn: Anhalt University of Applied Sciences
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 2, No 12, 667-686
Abstract:
Abstract This proof-of-concept study provides a novel method for robust-stable scheduling in dynamic flow shops based on deep reinforcement learning (DRL) implemented with OpenAI frameworks. In realistic manufacturing environments, dynamic events endanger baseline schedules, which can require a cost intensive re-scheduling. Extensive research has been done on methods for generating proactive baseline schedules to absorb uncertainties in advance and in balancing the competing metrics of robustness and stability. Recent studies presented exact methods and heuristics based on Monte Carlo experiments (MCE), both of which are very computationally intensive. Furthermore, approaches based on surrogate measures were proposed, which do not explicitly consider uncertainties and robustness metrics. Surprisingly, DRL has not yet been scientifically investigated for generating robust-stable schedules in the proactive stage of production planning. The contribution of this article is a proposal on how DRL can be applied to manipulate operation slack times by stretching or compressing plan durations. The method is demonstrated using different flow shop instances with uncertain processing times, stochastic machine failures and uncertain repair times. Through a computational study, we found that DRL agents achieve about 98% result quality but only take about 2% of the time compared to traditional metaheuristics. This is a promising advantage for the use in real-time environments and supports the idea of improving proactive scheduling methods with machine learning based techniques.
Keywords: Dynamic flow shop; Predictive scheduling; Proactive scheduling; Robust scheduling; Reinforcement learning; Simheuristics (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-022-02069-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02069-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-022-02069-x
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().