PreAugNet: improve data augmentation for industrial defect classification with small-scale training data
Isack Farady (),
Chih-Yang Lin () and
Ming-Ching Chang ()
Additional contact information
Isack Farady: Yuan Ze University
Chih-Yang Lin: National Central University
Ming-Ching Chang: University at Albany
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 3, No 16, 1233-1246
Abstract:
Abstract With the prevalence of deep learning and convolutional neural network (CNN), data augmentation is widely used for enriching training samples to gain model training improvement. Data augmentation is important when training samples are scarce. This work focuses on improving data augmentation for training an industrial steel surface defect classification network, where the performance is largely depending on the availability of high-quality training samples. It is very difficult to find a sufficiently large dataset for this application in real-world settings. When it comes to synthetic data augmentation, the performance is often degraded by incorrect class labels, and a large effort is required to generate high-quality samples. This paper introduces a novel off-line pre-augmentation network (PreAugNet) which acts as a class boundary classifier that can effectively screen the quality of the augmented samples and improve image augmentation. This PreAugNet can generate augmented samples and update decision boundaries via an independent support vector machine (SVM) classifier. New samples are automatically distributed and combined with the original data for training the target network. The experiments show that these new augmentation samples can improve classification without changing the target network architecture. The proposed method for steel surface defect inspection is evaluated on three real-world datasets: AOI steel defect dataset, MT, and NEU datasets. PreAugNet significantly increases the accuracy by 3.3% (AOI dataset), 6.25% (MT dataset) and 2.1% (NEU dataset), respectively.
Keywords: Data augmentation; Synthetic sample generation; CNN; Surface defect classification; Decision boundary; PreAugNet (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02109-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-023-02109-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-023-02109-0
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().