EconPapers    
Economics at your fingertips  
 

Power spectral density moment of having defective 3D printed plastic beams under moving load based on deep learning

Thanh Q. Nguyen (), Nghi N. Nguyen () and Xuan Tran ()
Additional contact information
Thanh Q. Nguyen: Ho Chi Minh City University of Transport
Nghi N. Nguyen: Hospital of Odonto-Stomatology Ho Chi Minh City
Xuan Tran: Thu Dau Mot University

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 4, No 5, 1515 pages

Abstract: Abstract 3D printing and 3D printing technology are increasingly popular in today’s world. However, there have not been many studies evaluating the quality of 3D printed products in real-life applications. This manuscript proposes a parameter for monitoring deterioration conditions of 3D printed plastic structures based on a multilayer perceptron network, using power spectral density (PSD) under a moving load. To create deterioration phenomena in the 3D printed plastic beam structures, simulations with cracks that change the stiffness of the structure are conducted. The features presented in this manuscript are constructed from the alteration forms of power spectral density used to detect the deterioration of a 3D printed plastic structure, accomplished by creating damage in beams and using a multilayer perceptron network in an input training dataset. Under these circumstances, the power spectral density is established by vibration signals obtained from acceleration sensors scattered along the 3D printed plastic beams. The results in this manuscript show that differences in the shapes of the PSD attributable to damage are more noticeable than those in the value of the basic beam frequency. This means that adjustments of shape in PSD will better allow the detection of damage in different 3D printed plastic beam structures. The determination of defects on 3D printed plastic beams by the power spectral density method has been used in research. However, the application of this deep learning model presents many new and positive effects.

Keywords: Power spectral density; Beam structures; 3D printed plastic; 3D printing technology (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02120-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02120-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02120-5

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:35:y:2024:i:4:d:10.1007_s10845-023-02120-5