EconPapers    
Economics at your fingertips  
 

A pre-trained model selection for transfer learning of remaining useful life prediction of grinding wheel

Seung-Ho Park and Kyoung-Su Park ()
Additional contact information
Seung-Ho Park: Gachon University
Kyoung-Su Park: Gachon University

Journal of Intelligent Manufacturing, 2024, vol. 35, issue 5, No 20, 2295-2312

Abstract: Abstract Grinding tools can be used for over 90% of their lifetime, but most practical production tools are replaced between 50 and 80%. Accurate tool condition monitoring, which can monitor the quality of grinding tools, can improve product quality and reduce costs. The transfer learning technique can solve the data distribution and data deficiency issues of deep learning methods, enabling precise tool condition prediction in a grinding system. However, selecting the optimal pre-trained model is crucial for enhancing transfer learning performance due to the relationship between the source and target domains and the negative transfer problem. To address this issue, an encoding metric-based model selection technique was developed that accurately reflects the time series similarity between the remaining useful life (RUL) of the grinding tool and the encoding value and features between the pre-trained model and target data. Encoding metrics that reflect the critical characteristics of transfer learning, such as the target label, data, and pre-trained model, were computed to assess the pre-trained models directly. The target RUL and the extracted encoding values from the target input data and pre-trained models were compared using measurements and correlation to evaluate how closely they matched. The encoding selection method demonstrated superiority over the current source selection criteria, with encoding-based root mean square error (RMSE), mean absolute error, and dynamic time warping showing a high association with the approach (over a Pearson correlation coefficient of 0.66). Furthermore, the method was independent of the quantity and quality of the sources, making it robust for various datasets. The experimental dataset was used to validate the pre-trained model's encoding RMSE selection method, and the method was verified with a strong correlation (Pearson correlation coefficient of 0.79). In conclusion, the proposed encoding metric-based model selection technique can improve both the efficiency and intelligence of the machining process in terms of both quantity (exchange periods) and quality of grinding tools. Accurate tool condition monitoring enabled by this technique can lead to enhanced product quality and reduced costs.

Keywords: Transfer learning; Pre-trained model selection; Remaining useful life; Encoding metrics; Pearson correlation coefficient; Tool condition monitoring (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02154-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02154-9

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02154-9

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02154-9