Applying machine learning to wire arc additive manufacturing: a systematic data-driven literature review
Abderrachid Hamrani (),
Arvind Agarwal,
Amine Allouhi and
Dwayne McDaniel
Additional contact information
Abderrachid Hamrani: Florida International University
Arvind Agarwal: Florida International University
Amine Allouhi: Ecole Supérieure de Technologie de Fès, U.S.M.B.A
Dwayne McDaniel: Florida International University
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 6, No 1, 2407-2439
Abstract:
Abstract Due to its unique benefits over standard conventional “subtractive” manufacturing, additive manufacturing is attracting growing interest in academic and industrial sectors. Here, special emphasis is given to wire arc additive manufacturing (WAAM), a directed energy deposition process that employs arc welding tools and wire to build metallic components by deposition of weld material. The WAAM process has several advantages, e.g., low cost, rapid deposition rate, and suitability for large complex metallic components. However, many WAAM challenges such as large welding deformation, undesirable porosity, and components with high residual stress remain to be overcome. Multidisciplinary cross-fusion research involving manufacturing, material science, automation control, and artificial intelligence/machine learning (ML) are deployed to overcome the above-mentioned problems. ML enables improved product quality control, process optimization, and modeling of complex multiphysics systems in the WAAM process. This research utilizes a data-driven literature review process, a defined and deliberate approach to localizing, evaluating, and analyzing published studies in the literature. The most relevant studies in the literature are analyzed using keyword co-occurrence and cluster analysis. Numerous aspects of WAAM, including design for WAAM, material analytics/characterization, defect detection/monitoring, as well as process modeling and optimization, have been examined to identify state-of-the-art research in ML for WAAM. Finally, the challenges and opportunities for using ML in the WAAM process are identified and summarized.
Keywords: Additive manufacturing; Wire arc additive manufacturing; Artificial intelligence; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02171-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02171-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-023-02171-8
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().