A hierarchical ensemble causal structure learning approach for wafer manufacturing
Yu Yang (),
Sthitie Bom () and
Xiaotong Shen ()
Additional contact information
Yu Yang: University of Minnesota
Sthitie Bom: Seagate Technology
Xiaotong Shen: University of Minnesota
Journal of Intelligent Manufacturing, 2024, vol. 35, issue 6, No 26, 2978 pages
Abstract:
Abstract In manufacturing, causal relations between components have become crucial to automate assembly lines. Identifying these relations permits error tracing and correction in the absence of domain experts, in addition to advancing our knowledge about the operating characteristics of a complex system. This paper is motivated by a case study focusing on deciphering the causal structure of a wafer manufacturing system using data from sensors and abnormality monitors deployed within the assembly line. In response to the distinctive characteristics of the wafer manufacturing data, such as multimodality, high-dimensionality, imbalanced classes, and irregular missing patterns, we propose a hierarchical ensemble approach. This method leverages the temporal and domain constraints inherent in the assembly line and provides a measure of uncertainty in causal discovery. We extensively examine its operating characteristics via simulations and validate its effectiveness through simulation experiments and a practical application involving data obtained from Seagate Technology. Domain engineers have cross-validated the learned structures and corroborated the identified causal relationships.
Keywords: Causal discovery; Data imbalance; Hierarchical ensemble; High-dimension; Wafer manufacturing (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02188-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02188-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845
DOI: 10.1007/s10845-023-02188-z
Access Statistics for this article
Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak
More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().