EconPapers    
Economics at your fingertips  
 

Stacked encoded cascade error feedback deep extreme learning machine network for manufacturing order completion time

Waqar Ahmed Khan (), Mahmoud Masoud (), Abdelrahman E. E. Eltoukhy () and Mehran Ullah ()
Additional contact information
Waqar Ahmed Khan: University of Sharjah
Mahmoud Masoud: King Fahd University of Petroleum and Minerals
Abdelrahman E. E. Eltoukhy: Khalifa University
Mehran Ullah: University of the West of Scotland

Journal of Intelligent Manufacturing, 2025, vol. 36, issue 2, No 27, 1313-1339

Abstract: Abstract In this paper, a novel stacked encoded cascade error feedback deep extreme learning machine (SEC-E-DELM) network is proposed to predict order completion time (OCT) considering the historical production planning and control data. Usually, the actual OCT significantly deviates from the planned because of recessive disturbances. The disturbances do not shut down production but slow down the production that accumulates over time, causing significant deviation of actual time from planned. The generation of weight parameters in neural networks using a randomization approach has a significant effect on generalization performance. To predict the OCT, firstly, the stacked autoencoder is used to generate input connection weights for the network by learning a deep representation of the real data. Secondly, the learned distribution of the encoder is connected to the network output through output connection weights incrementally learned by the Moore–Penrose inverse. Thirdly, the new hidden unit is added one by one to the network, which receives input connections from the input units and the last layer of the encoder to avoid overfitting and improve model generalization. The input connection weights for the newly added hidden unit are analytically calculated by the error feedback function to enhance the convergence rate by further learning deep features. Lastly, the hidden unit keeps on adding one by one by receiving connections from input units and some of the existing hidden units to make a deep cascade architecture. An extensive comparative study demonstrates that calculating connection weights by the proposed method helps to significantly improve the generalization performance and robustness of the network.

Keywords: Autoencoder; Deep learning; Extreme learning machine; Network weights; Order completion time (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10845-023-02303-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02303-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10845

DOI: 10.1007/s10845-023-02303-0

Access Statistics for this article

Journal of Intelligent Manufacturing is currently edited by Andrew Kusiak

More articles in Journal of Intelligent Manufacturing from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02303-0